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Abstract— The rapid growth of solar Photovoltaic (PV) 

technology has been very visible over the past decade. Such 
increase in the integration of solar generation has brought 
attention to the forecasting issues. This paper presents a new 
approach to tackle the long-term forecasting challenge and 
accordingly reduce the uncertainty of the PV forecast, which 
would accordingly help facilitate its integration into the electric 
power grid. The new method includes a set of pre- and post-
processes that will be undertaken before the data is fed to the 
forecasting model and after the forecast is obtained. Using the 
proposed method, the historical solar PV radiation data, which is 
non-stationary, is converted to a set of stationary data which will 
accordingly allow utilization of a larger set of data for 
forecasting. Numerical simulations exhibit the performance of 
the proposed method.  
 

Index Terms—Photovoltaic, neural network, solar forecasting, 
global horizontal irradiance (GHI), clear sky irradiance.   

NOMENCLATURE 

 ௦. Hourly historical GHIܫܪܩ
  ௌ            Hourly historical clear sky GHIܫܪܩ
 ௦௧      Forecasted global horizontal irradianceܫܪܩ
 ௌܫܪܩ	݀݊ܽ.௦ܫܪܩ ௗ௩.           The difference betweenܫܪܩ
 .          Normalized GHI datasetܫܪܩ
 ௗ.       Denormalized GHI datasetܫܪܩ
 Mean absolute percentage error              ܧܲܣܯ
 Index for year            ݐ
݄            Index for hour 
ܰ            Number of samples 
 Weights between neurons            ݒ and ݓ
݇  Index for neurons 

I. INTRODUCTION 

enewable energy resources are becoming critical players 
in the electricity generation sector, primarily due to 
viability in combating global warming, effectiveness in 

reducing pollution caused fossil fuel based generation, and 
diversifying energy mix to ensure energy security and 
sustainability. Solar energy is one of the most common types 
of renewable energy that has grown rapidly over the past 
decade and is anticipated to grow even faster in the future. At 
the end of 2011, a total capacity of 65 GW solar PV was 
installed globally, compared to 1.5 GW installed PV capacity 
in 2000. Over half of that capacity was installed in Germany 
and Italy, followed by Japan, Spain, the United States and 
China [1]. In 2013, the cumulative installation capacity of PV 
systems reached up to 138.9 GW with new installation of 38.4 

GW [2], with a large share of market, around 56%, in Asia. 
The highest PV installation was in China which installed 11.8 
GW of PV in 2013, followed by Japan (6.9 GW) and the U.S. 
(4.8 GW). [2]. In 2013, the U.S. achieved a remarkable trend 
in solar power. The PV installation increased by 41% in 2013 
compared to 2012. This increase resulted in solar power 
taking the second place in generating electricity, coming only 
after natural gas. More than half of 2013 installations in the 
U.S. occurred in California with an installation capacity 
around 2.8 GW. Arizona was in the second place with a total 
installation capacity around 0.7 GW. There is now a total of 
12.1 GW of PV and 918 MW of concentrated solar plant 
(CSP) operating in the U.S. [3]. Fig. 1 depicts the percentage 
share of new generation capacity in the U.S. for the past three 
years which clearly demonstrates the growing interest in solar 
generation.  

 
Fig. 1 U.S generation capacity mix for 2012, 2013, and 2014 [4]. 

Although significantly increasing in the size and installed 
capacity, the variability and the uncertainty of renewable 
generation challenges an efficient integration of these 
resources to the power grid. The variability and the 
uncertainty are inherent characteristics of renewable 
resources. Variability refers to the intermittent (i.e., not 
always available) and fluctuating (i.e., constantly changing 
from seconds to minutes to hours) nature of renewable 
generation, while the uncertainty represents the inability to 
predict in advance the timing and the magnitude of the 
generation variability. Forecasting aims to accurately 
determine the future generation values of renewable resource 
and accordingly reduce the generation uncertainty so that the 
grid operator will be able to accommodate its variability [5]. 
A variety of techniques for renewable forecast is proposed in 
the literature, considering different forecasting horizons and 
offering different levels of accuracy [6]–[10]. For example in 
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[11] a MAPE of 16.83% to predict the solar power output for  
four days is achieved using the recurrent neural network. In 
[12], the solar power output was forecasted for 24 hours ahead 
based on weather type classifications (sunny, rainy, or cloudy) 
using the neural network where a MAPE ranging from 8.29% 
to 54.44% is achieved. 

This paper aims to address a novel forecasting model that 
helps reducing the uncertainty of the long term PV generation 
forecasting. The paper presents a comparison between the 
new proposed method and available methods in long term 
forecasting and shows that the forecasting error is 
significantly reduced. The rest of the paper is organized as 
follows. Section II provides a literature review on existing 
forecasting methods and challenges. Sections III present the 
forecasting model outline and formulation of the proposed 
forecasting method. Section IV provides a comparison of 
forecasting accuracy between some of the existing methods 
and the proposed method. The discussions and conclusion are 
provided in Sections V and VI, respectively. 

II. SOLAR GENERATION FORECASTING CHALLENCHES  

Forecasting is not only essential for variable generation, but 
also useful in load forecasting. In addition, some energy 
economics quantities such as the electricity price should be 
forecasted to help with grid’s operation, maintenance, and 
planning [13]. An accurate renewable generation forecast will 
provide benefits by (i) Minimizing penalties and charges due 
to imbalance of generated power, (ii) Providing a good 
knowledge of future energy market trading, and (iii) Helping 
to carry out reliable operation and maintenance planning [14].  

A. Solar Irradiance Forecasting Challenges 
The current forecasting methods have confronted variety of 

challenges that are the source of high forecasting error. When 
comparing the load forecasting errors to solar irradiance 
forecasting errors, it is clear that the solar irradiance 
forecasting is less accurate due to several reasons: First, the 
time series of solar irradiance is less predictable compared to 
load forecasting. This is because of the non-stationarity nature 
of the solar data. The non-continuity of the solar data pattern 
due to weather changes has imposed significant limitations to 
forecasting models [15]. So, during the clear sky conditions 
(sunny) as in Fig. 2a, it is obvious that the patterns are 
noticeable and the forecasting error is less in these conditions. 
However, if the weather conditions vary, the pattern of the 
time series is hardly predictable as in Fig. 2b. 

The second challenge that imposes limitations to 
forecasting model is the change of daytime hours from one 
day to another during the forecasting horizon (i.e., the sunset 
and the sunrise). As shown in Table I, the daytime hours 
change every day. This will impact the pattern of the time 
series and hence increase the error relatively. The third 
challenge is the lack of long-term historical solar irradiance 
data. The long-term forecasting usually requires a long range 
of dataset to be trained so the model can extract patterns of 
the time series. 

 
(a) 

 
(b) 

Fig. 2 Solar irradiance for four consecutive days (a) Sunny, (b) Partly cloudy. 

Therefore, the solar irradiance is highly dependent on 
cloud cover and the daytime hours. In addition, the solar 
irradiance shows a weak stationarity character in terms of a 
repetitive pattern. Such variations in pattern will cause 
difficulty to predict any future changes in solar irradiance and 
limits the application of historical data to highly-correlated 
ones. Also, the forecasting model requires a large historical 
dataset to be trained and such amount of data is most likely 
difficult to be found as solar measurements are limited [15]. 

TABLE I 
SAMPLE OF SELECTED SUNRISE AND SUNSET TIME AND DAYTIME HOURS 
Day Sunrise Sunset Daytime hours 
22-Jan 7:15 17:06    9 h, 51 min 
18-Jul 5:46 20:24 14 h, 38 min 
3-Nov 6:30 16:54 10 h, 24 min 

 
B. PV Forecasting Techniques 

Forecasting methods can be categorized into three different 
methods: Physical, Statistical, and Hybrid [16]. Physical 
models tend to be good for long term forecasting. Two 
common physical models are the NWP and the satellite sky 
imagery. The NWP is based on the physics of the atmosphere 
which uses current observations of the weather and processes 
this data to predict the future states using super computers. 
The satellite and cloud imagery based model is a physical 
forecasting model that analyzes clouds [17], [18]. Under low 
sun elevations, low irradiance conditions, and high spatial 
variability, the errors of satellite and cloud images can 
increase significantly. In [19] a 17% RMSE for half hour 
cloud index forecast and 30% RMSE for 2 hours forecast is 
achieved. The statistical method is a mathematical model that 
uses historical data to predict future values. It is referred to 
statistical because it utilizes mathematical equations to 
identify the patterns and trends. Statistical models can be 
persistence models or time series models that include auto-
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regressive (AR), moving average (MA), or both (ARMA). 
The persistence model is the simplest way for forecasting 
which basically predicts the future value, assuming it is the 
same as the previous value. Time series models are based on 
the historical data and are defined as a sequence of 
observations measured over time, such as the hourly, daily, or 
weekly. It is a stochastic process as observations could be 
random. Hybrid models merge two forecasting techniques to 
improve the forecast accuracy. They are also known as 
combined models. The basic idea of hybrid models is to 
overcome any deficiency of using an individual model, such 
as regression models, to take the advantage of each individual 
model and combine them to reduce forecast errors. For 
instance, the NWP model can be combined with the ANN by 
feeding the outputs from the NWP as input to the ANN. In 
[20] a hybrid model was developed by using the satellite 
imaging as inputs to ANN. 

III. THE PROPOSED FORECASTING MODEL  

The global horizontal irradiance (GHI) is the main 
component considered during the PV generation forecasting. 
The GHI data in specific locations are publically available in 
many countries, such as the data provided by the National 
Renewable Energy Laboratory (NREL) in the U.S. [7], [21]. 
In addition to the GHI historical data, the clear sky GHI is 
also needed in the proposed method. The clear sky data 
represents the maximum GHI that could be received during a 
clear sky day. The solar irradiance is not variable during a 
clear sky day. Additional data that are collected for the 
proposed model include cloud cover, temperature, wind 
speed, and dew temperature. The weather data is available in 
[22] which is provided by the National Climatic Data Center 
(NCDC).  

The flowchart of the proposed method is presented in Fig. 3 
which shows the three stages of the GHI forecasting process, 
including data pre-process, forecast, and data post-process.  
Once the final forecast is obtained using the proposed method, 
the MAPE is calculated to exhibit if it is acceptable. If not, the 
dataset will be retrained with changing the forecast structure. 
These stages are described in more detail in the following: 

Stage 1: Data Pre-Process  
The data preprocessing is a process that occurs before the 

data fed into the forecasting tool. The preprocessing includes: 
removing the offset, removing nighttime GHI data, and 
normalization. To remove the offset, the historical GHI data is 
subtracted from the clear sky GHI using (1). The resultant 
data represents the GHI scattered by cloudiness or other 
factors as shown in Fig. 4.  

This data is a function of time and location and reflects all 
meteorological data that affects solar irradiance. During the 
forecasting process, other meteorological data is fed to the 
model to predict the future GHI.  

,ݐௗ௩.ሺܫܪܩ ݄ሻ ൌ ,ݐௌሺܫܪܩ ݄ሻ െ ,ݐ௦.ሺܫܪܩ ݄ሻ								 
	݄ ∉  ݏݎݑ݄	݁݉݅ݐݐ݄݃݅݊

(1) 

,ݐ.ሺܫܪܩ ݄ሻ ൌ ,ݐௗ௩.ሺܫܪܩ ݄ሻ/ܫܪܩௌሺݐ, ݄ሻ								 
݄ ∉  ݏݎݑ݄	݁݉݅ݐݐ݄݃݅݊

(2) 

 

 
Fig. 3 Proposed flowchart for GHI forecasting process 

Once the offsets are removed, the data will be normalized 
using (2), in which the obtained GHI data is divided by the 
associated peak clear sky solar irradiance in that day, hence 
resulting in a value ranging from 0 to 1. Using normalization, 
all available data will be under the same reference scale, thus 
the variability as a result of changing solar irradiance peak 
will be eliminated. The meteorological data is accordingly 
normalized to [-1,1] using associated daily minimum and 
maximum values.  

 
Fig. 4 GHI deviation between clear sky GHI and historical GHI 

The last step in data pre-processing is to remove nighttime 
hours. The solar irradiance varies during the daytime and is 
zero during the nighttime. However, the daytime hours 
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change daily as the sunrise and sunset changes. By removing 
the nighttime hours in this step, only daytime GHI hourly data 
are remained and will processed. This is accomplished by 
keeping the daytime hours knowing the exact daily sunrise 
and sunset as illustrated in Fig. 5. The daytime hours, sunrise, 
and sunset are fixed for each specific day for the same 
location over the years. This preprocess is also applied to 
other input data such as temperature and cloud cover. The 
complete list of sunrise and sunset times can be found in [23]. 
An example is provided in Table I.  

 
Fig. 5 Daytime hourly GHI in cloudiness and clear day 

Stage 2: Forecasting 
In the forecasting process, the neural network toolbox is 

used to predict the future GHI. The GHI data is forecasted in 
two different ways and the error is compared. The NARX is 
used to forecast GHI using weather and historical GHI data. 
The historical and other weather data are fed to the model as 
input whereas the actual data is fed as a target. The NN 
structure is established by choosing the number of hidden 
layers and delays. Once the NN structure is completed, the 
training process is started. The dataset is trained until the error 
is minimized between the forecasted and the actual output as 
illustrated in (3) given the inputs, weights, number of hidden 
nodes and layers. Here the actual output and the forecasted 
output are ܫܪܩ.	 and 	ܫܪܩ.

 respectively. The 
weights between neurons are ݓ	  and ݒ .  If the error is not 
acceptable, the data is retrained after changing the NN 
structure. The output of the model represents the forecasted 
GHI data. This paper utilizes NN due to its many benefits in 
forecasting, however, any other available method can be used 
without loss of generality of the proposed method.  

݉݅݊ ,ݓሺܧ ,ݒ ,ߠ ሻߛ ൌ
1
ܰ
ሾܫܪܩ.ሺݐ, ݄ሻ

ேଶ

ୀଵ

ேଵ

௧ୀଵ

ே

ୀଵ

െ ,ݐ.ሺܫܪܩ ݄ሻ
 ሿ

ଶ
൏  ଵߝ

(3) 

Stage 3: Data Post-Processing 
The forecasted data represents only the daytime hours, and 

it is normalized. Therefore, three different steps are added 
after GHI forecasting: denormalization, adding nighttime 
hours, and calculating the forecasted GHI. 

The processed data after forecasting will be multiplied by 
the daily peak clear sky GHI data to produce the deviated GHI 
forecasted data using (4). The resulted dataset represents the 
data that are obtained in the first step in the flowchart. The 
nighttime hours are further added in a second step to have 
complete data for each forecasting day. The sunrise and 

sunset times in addition to the daytime duration are used to 
add the removed hours. In the last step, the forecasted data, 
after denormalization and addition of nighttime hours, is 
subtracted from the clear sky GHI to obtain the actual forecast 
values using (5).  

IV. NUMERICAL STUDIES 

In this section, fifteen years of GHI and clear sky solar 
data, for the Denver international airport has been used. The 
dataset represents the interval from 1996 to 2010 which is 
provided by NREL [7]. Four different weather data are 

collected for the same site, including cloud cover, 
temperature, wind speed, and dew temperature, which is 
provided by the National Climatic Data Center (NCDC) [22]. 
The following cases are studies: 
Case 1: GHI forecasting using exiting forecasting methods 
Case 2: GHI forecasting using the new proposed method 

Case 1: The GHI was forecasted using the time series NN 
provided in MATLAB. The dataset was fed to the model 
without using any data processing and the error was evaluated 
using (6). The resulted forecasting GHI shows some distorting 
values that exceed the actual GHI values. Figure 6a depicts 
the difference between the actual and the forecasted GHI for 
the last quarter of the forecasting year. These distortions could 
be less during the summer times when the weather conditions 
have less influence in the predicted GHI. One of error sources 
is the large size of non-stationary dataset that has been used in 
the forecasting process which results in accumulating errors 
as the forecasting horizon increases. 

Case 2: The proposed method ensures that the dataset is 
converted from non-stationary to stationary to allow the 
utilization of a large dataset. First, the dataset is exposed to a 
pre-process stage where the data are normalized, GHI 
nighttime values and offset are removed. Then, the dataset is 
introduced to NN tool where the output GHI is forecasted. 
Finally, the dataset is exposed to the post-process where 
resulted GHI data from previous step are denormalized, 
nighttime values are added, and the GHI data is calculated. 
Using (6) the MAPE is calculated. In case of a high error, the 
forecasting tool is adjusted to get a better forecasting 
performance. Figure 6b shows the actual and forecasted GHI 
data where both values almost overlap. Forecasting error 
results in Cases 1 and 2 are listed in Table II. 

TABLE II 
 THE CALCULATED MAPE FOR CASES 1 AND 2 

Data Forecasted MAPE (%) 
GHI using available methods  63.78 % 

GHI with using the proposed method 9.97% 

,ݐௗ.ሺܫܪܩ ݄ሻ ൌ ,ݐேேሺܫܪܩ ݄ሻ ∗ ,ݐௌሺܫܪܩ ݄ሻ  
∀݄  

(4) 

,ݐ௦௧ሺܫܪܩ ݄ሻ ൌ ,ݐௌሺܫܪܩ ݄ሻ െ ,ݐௗሺܫܪܩ ݄ሻ  
∀݄  

(5) 

ܧܲܣܯ ൌ 
ଵ

ே
∗ ∑ ∑ ቚ

ீுூೞ.ሺ௧,ሻିீுூೝೌೞሺ௧,ሻ

ீுூೞ.ሺ௧,ሻ
ቚேଶ

ୀଵ
ேଵ
௧ୀଵ ∗ 100    

∀݄   

(6) 



 5

It is obvious that the proposed method has significantly 
decreased the MAPE (by almost 84%). Such enhancement in 
the forecasting performance allows the grid operator to 
perform a better operation and long term planning. The grid 
operator will also be able to perform reliable and safe 
maintenance planning and avoid any risks due to imbalance in 
power supply.  

 

 
Fig. 6 The hourly GHI for selected days (a) using an available forecasting 

method, (b) using the proposed forecasting method. 

V. DISCUSSIONS 

The proposed forecasting model has shown a significant 
decrease in the forecasting error comparing to the first case 
where the dataset is fed to the model without any processing. 
The new model has many features compared to the existing 
methods: 
 The model converts the non-stationary data to stationary, 

where the statistical properties of the given time series, 
such as mean and variance, are constant functions of time. 

 The proposed model reduces the dataset size almost to half 
because it’s not including the nighttime values when the 
GHI is zero. This will accelerate the time needed to perform 
the forecasting. 

 The accuracy of the forecasting is significantly improved, 
hence the grid operator will be able to carry out reliable 
operation, maintenance, and planning.  

VI. CONCLUSIONS 

The accuracy of the global horizontal irradiance forecast is 
an important factor due to many operational, economical, and 
engineering reasons. The objective of this work was to 
propose a novel long-term forecasting method which was 
based on data pre- and post-process. The novelty of this study 
was to analyze the dataset before it was fed to the forecasting 
model in order to make sure that the dataset is stationary. The 
processed time series data was fed into a neural network allied 
with the nonlinear autoregression with external input 
(NARX). The proposed method showed an improvement in 
the accuracy of the forecasting, where the long-term MAPE 
was substantially reduced from 63.78% to 9.97%. This 
promising result can be further applied to shorter time 
horizons, such as day-ahead forecasting, which will be 
considered as future work of this research. 
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